Search results for "neutron-skin effect"
showing 3 items of 3 documents
Neutron skin and centrality classification in high-energy heavy-ion collisions at the LHC
2015
The concept of centrality in high-energy nuclear collisions has recently become a subject of an active debate. In particular, the experimental methods to determine the centrality that have given reasonable results for many observables in high-energy lead-lead collisions at the LHC have led to surprising behaviour in the case of proton-lead collisions. In this letter, we discuss the possibility to calibrate the experimental determination of centrality by asymmetries caused by mutually different spatial distributions of protons and neutrons inside the nuclei --- a well-known phenomenon in nuclear physics known as the neutron-skin effect.
Neutron-skin effect in direct-photon and charged hadron-production in Pb+Pb collisions at the LHC
2017
A well-established observation in nuclear physics is that in neutron-rich spherical nuclei the distribution of neutrons extends farther than the distribution of protons. In this work, we scrutinize the influence of this so called neutron-skin effect on the centrality dependence of high-$p_{\rm T}$ direct-photon and charged-hadron production. We find that due to the estimated spatial dependence of the nuclear parton distribution functions, it will be demanding to unambiguously expose the neutron-skin effect with direct photons. However, when taking a ratio between the cross sections for negatively and positively charged high-$p_{\rm T}$ hadrons, even centrality-dependent nuclear-PDF effects …
Neutron-skin effect and centrality dependence of high-pT observables in nuclear collisions
2016
We report on our studies of the neutron-skin effects in high-pT observables at the LHC. We study the impact of the neutron-skin effect on the centrality dependence of inclusive direct photon, highpT hadron and W± production in nuclear collisions at the LHC. The neutron-skin effect refers to the observation that in spherical heavy nuclei, the tail of the neutron distribution extends farther than the distribution of protons, which can affect observables sensitive to electroweak phenomena in very peripheral collisions. We quantify this effect for direct photons, charged hadrons and W bosons as a function of the collision centrality. In the case of direct photons we find that it will be difficu…